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Statistical theory of the compensating effect when anchoring with two orthogonal
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In this paper we extend a statistical microscopic analysis to the anchoring properties of polymer films
obtained by two concomitant or subsequent polymerization processes along two different directions. We can
thus explain the recently observed compensating effect of two orthogonal polymerization processes. An ex-
pression for the anchoring energy has been evaluated from the extra Helmholtz free energy within an interface
layer where the interactions shift from polymer-nematic interactions to nematic-nematic interactions, as in
bulk. The result includes the angular dependence on the two photoaligning directions. A procedure of getting
controlled anchoring strengthin situ is suggested.
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I. INTRODUCTION

Liquid-crystal ~LC! electro-optical devices need a su
strate with anisotropic surface anchoring properties. W
known methods to achieve this property have been, for
stance, obliquely evaporated SiOx layers, buffed polymer
films, etc. All these methods have at least two main dis
vantages: physical damage and nonuniformities, genera
of dust particles and/or electrostatic charges in the first pla
and the fact that once the cell was assembled the ancho
properties can no longer be altered. In the 1990s a new t
nique emerged, called photoalignment, which allows o
to align and realign the directorn̂ on the substrate of the
filled cell. It was first demonstrated thatpoly(vinyl)4-
methoxycinnamateandpoly(vinyl)cinnamatefilms, when ex-
posed to linearly polarized ultraviolet light~LPUV!, can be
effective as alignment layers. The aligning effect ofpolyim-
ide or of para-fluorocinnamoyl cellulosefilms exposed to
LPUV has also been reported@1–5#.

An important parameter of photoalignment is the exp
sure time to UV because both experiment and theoret
arguments lead to a well defined irradiation time that giv
the maximum anisotropy of the polymer layer@2,5–7#. In the
following we will consider that the photopolymer orientin
layer generates a microscopic surface field decaying tow
the bulk@7#. This model of a surface field responsible for t
liquid-crystal orientation,diluted in space over a thin anchor
ing layer, had been already used in Ref.@8# and discussed
recently in Refs.@9–11#.

In our previous paper@7# a statistical approach for th
nematic order, also taking into account the surface ani
ropy, has been made in the frame of mean field theory
gives a Boltzmann type orientational distribution functi
depending on both nematic-nematic and nematic-polyme
teraction energies. The azimuthal anchoring energy co
1063-651X/2002/65~4!/041710~10!/$20.00 65 0417
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cient has been evaluated from the extra Helmholtz free
ergy within an interface layer of thicknessj that may be
interpreted as the length over which the density chan
from pure polymer to pure liquid crystal or, generally spea
ing, j is the typical length over which the interaction forc
between the polymer and the liquid crystal take place in
sense of diluted surface potential mentioned above@8–11#.

Beyondj the pure liquid-crystal Boltzmann-type distribu
tion function and, consequently, the order parameter do
depend on any particular direction, i.e., there is degener
of the nematic director in ‘‘practically’’ infinite bulk. Yet, the
direction that is imposed by the oriented polymer through
polymer-nematic interaction will give the common orient
tion of the director in the bulk in order to minimize th
elastic energy. In fact, it is this condition of minimum fre
energy that propagates to the bulk the direction deci
within the interface thicknessj. The same statistical ap
proach used here has been followed to find a microsco
expression of the nematic elastic coefficients~K22 in particu-
lar!, which depends directly on the order parameter in
bulk. From the microscopic point of view, this approach pr
vides a logical transition from the anchoring energy with
the interface to the elastic energy in the bulk@12#.

In this paper we extend our previous model to the case
two photopolymerization directions. The subject is of lar
interest and recently both theoretical and experimental w
on it has been reported@5#. In particular, our statistical ap
proach can explain on microscopic grounds the compen
ing effect of two orthogonal irradiations@5#.

From a fundamental point of view, the polymer-nema
interface is completely described by all the molecular cor
lation functions that, in practice, cannot be determined. Ho
ever, by using the idea of mean field theory of Maier a
Saupe@13# one can write the macroscopic free energy a
functional of the orientational distributionf (V) taking into
©2002 The American Physical Society10-1
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account all the molecular interactions. By molecular inter
tions we shall consider both nematic molecule–nematic m
ecule anisotropic interaction and nematic molecule–polym
fragment anisotropic interaction. The functionf (V) is ob-
tained by means of a self-consistent calculation, in orde
minimize the free energy in the equilibrium state@14–16#.
Starting with a trueN-body distribution function, one can
eventually use only a one-particle distribution function th
separates the radial distribution from the orientational o
@6,7,17#. It is convenient to express it as a density distrib
tion function

N

V
R~r ! f ~u!, ~1!

where r is the distance between the centers of mass of
two molecules~or a molecule and a polymer fragment! andu
is the angle between the long axes of the molecules~or poly-
mer fragments! and a certain fixed direction.R(r ) would
only be different from a constant if the distance were ve
small, i.e., of the order of molecular dimensions. Also, o
has to use the normalizing conditions

E
V
R~r !

N

V
r 2dr5N,

E f ~u!dV51. ~2!

In Ref. @6#, we have analyzed the orientational effect
cross-linked polymerized photopolymers on the nematic
uid crystals. This effect was discussed in terms of the dis
bution function of polymer fragments that will depend on t
time of photopolymerization. Considering the fact that bo
an increase of polymer cross links on one direction and
decrease of polymer fragments on an orthogonal direc
contribute to the anisotropic anchoring of LC, the distrib
tion function of polymers or, better say, the distribution fun
tion of fragments responsible for anisotropy is

g~f!5
1

p
~11e2A~ t !sin2 f2e2A~ t !cos2 f!, ~3!

where the positive functionA(t), starting from 0 fort50,
tends to a certain limit for very larget, preventing the poly-
mer distribution to become isotropic again.f being the on-
surface projected angle between one pair of unpolari
monomers and the direction of UV light polarization, th
term in sin2 f in Eq. ~3! gives the increase of polymer frag
ments alongf50, whereas the term in cos2 f gives the de-
crease of polymer fragments alongf5p/2, both contribut-
ing thus to the total anisotropy. This polymer distributio
function can be characterized rather well by an order par
eterS1 , smaller than the order parameterSof LC in the bulk,
and which goes to zero within the distancej.

In the frame of mean field theory, including also the s
face anisotropy expressed by the distribution functiong(f),
04171
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one can obtain the Boltzmann-type distribution functi
f (u), which in the interface layer depends on both nema
nematic and nematic-polymer energies. The easy axi
given by the anglef50 for which the polymer distribution
function has a maximum@7#.

In this paper we shall consider two processes of LPU
either concomitantly or subsequently, each one being cha
terized by two distribution functionsg1(u12a1) andg2(u2
2a2), which would define, if considered alone, an easy a
alonga1 or a2 , respectively. Following the general ideas
Ref. @7#, we shall estimate the anchoring energy coefficie
and shall consider the interesting casea12a25p/2. A com-
parison with the experimental data and the theoretical c
siderations reported in Ref.@5# will show the agreemen
between our microscopic approach and the tensor phen
enological description used in paper@5#, giving thus the later
better grounds.

II. THEORETICAL MODEL

Let us consider a representative LC molecule descri
by its long axis directionâ, which interacts with other LC
molecules (â8) and polymer fragments~â1 and â2! oriented
about two directionsa1 and a2 , respectively. In Fig. 1 we
present a simplified situation where all the four versors lie
the same basal plane (z50). The versorâ is characterized
by a polar angleu with respect to the in-planeOx axis and an
azimuthal anglew measured on theOyzplane. The distribu-
tion of this molecule in a certain small solid angledV will
be f (u)dV. In the same way the other three versors will
characterized by the coordinates (u8,w8), (u1 ,w1), (u2 ,w2).
The distribution ofâ8 will be, of course, the same functio
f (u8), and the distributions ofâ1 andâ2 areg1(u12a1) and
g2(u22a2). g1 andg2 could be different functions, depend
ing on the time and intensity of photopolymerization@6#. As
a matter of fact, each distribution function should depend
the appropriate anglew. Yet, this fact can be disregarded fo
two reasons:~a! because of the general planar orientation
both LC molecules and polymer fragments the anglesw’s

FIG. 1. An in-plane view of the relevant directions and anglesâ
andâ8 stand for the LC molecule long axis directions andâ1 andâ2

for the polymer directions. The anglesu, u8, u1 , andu2 are mea-
sured off theOx axis whereasu0 , u01, and u02 give the angular
distance betweenâ and the other three versors. In this picture t
azimuthal anglesw’s have not been presented.
0-2
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STATISTICAL THEORY OF THE COMPENSATING . . . PHYSICAL REVIEW E65 041710
have values either very close to zero or very close top; ~b!
the distribution of anglesw is symmetric with respect to th
Oxzplane. Because of the fact that for LC~and for polymer
fragments, too! â is equivalent to2â any possible orienta
tion can be characterized byuP@0,p/2# andwP@0,2p#. For
this reason, the limits to integrals should be 0 andp/2 in-
stead ofp. Only that all the functions we will consider ar
even in cosu or sinu and

E
0

p

F~cosu!dV52E
0

p/2

F~cosu!dV,
th
se
el

-

in

04171
where F(cosu) is even in cosu ~or sinu!. Because of the
degree of freedom given by the normalizing condition w
shall still use the standard integration limits 0;p for u and 0;
2p for w.

The pair interaction potential is considered to depend o
on the angle between the long axes of molecules, i.e.,u0

5/(â,â8), u015/(â,â1), u025/(â,â2). ~The interaction
betweenâ1 andâ2 is not at all relevant to our system, it onl
contributes a constant to the internal energy.!

The internal energy is given by all the interactions
E5
1

2 EV
d3r 8dV8

N

V
R~r 8! f ~u8!E

V
d3r dV

N

V
R~r ! f ~u!V~r ,u0!

1E
V
d3r dV

N

V
R~r ! f ~u!E

V
d3r 1dV1

N1

V
R1~r 1!g1~u12a1!V1~r ,u01!

1E
V
d3r dV

N

V
R~r ! f ~u!E

V
d3r 2dV2

N2

V
R2~r 2!g2~u22a2!V2~r ,u02!. ~4!
f
ind

n

The factor1
2 in the first term in Eq.~4! comes from the fact

that we must not count the pairs LC-LC twice.V is the angle
and distance dependent pair potential.

The polymer distribution being considered as fixed,
entropic contribution to the Helmholtz free energy will ari
only from the orientation of LC molecules and, using a w
known formula@18#, one has

S52kE
V
d3r dV

N

V
R~r ! f ~u!lnFN

V
R~r ! f ~u!G

52kNE dV f ~u!ln@ f ~u!#

1constant with respect tof ~u!. ~5!

The condition of minimum free energy at equilibrium im
plies that

dS F1lE f ~u!dV D50, ~6!

whereF5E2TS stands for Helmholtz free energy andl is a
Legendre multiplier that takes into account the normaliz
condition of Eq.~2!. As in Refs.@6# and@7# we shall use the
following notations:

nU~u0!5
N

V E
V
d3r V~r ,u0!R~r !,

n1U1~u01!5
N1

V E
V
d3r V1~r ,u01!R1~r !, ~7!
e

l

g

n2U2~u02!5
N2

V E
V
d3r V2~r ,u02!R2~r !,

where n5N/V and ni5Ni /V, i 51, 2 are the densities o
molecules and of polymer fragments of one or the other k
with respect to thetotal volume of the sample V. Then

M ~u!5nE dV8 f ~u8!U~u0!,

M1~u,a1!5n1E dV1g1~u12a1!U1~u01!, ~8!

M2~u,a2!5n2E dV2g2~u22a2!U2~u02!.

Because the free energyF does not contain explicitly the
derivative of the functionf (u), the Euler-Lagrange equatio
associated to the condition~6! is simply

]

] f S F1lE f ~u!dV D50. ~9!

Eventually@7#, one gets

f ~u,a1 ,a2!5
1

Z
expF2

M ~u!1M1~u,a1!1M2~u,a2!

kT G ,
~10!

where
0-3
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Z5E expF2
M ~u!1M1~u,a1!1M2~u,a2!

kT GdV.

~11!

The radial dependence of the pair potentialsV is not
known, except for the fact that they have the general beh
ior of a Lennard-Jones potential. Nor is the dependence ou
of the average potentialsU known exactly. In fact, Lennard
Jones and Morse potentials parametrize successfully van
Waals forces for pointlike or spherically shaped bodies
was not until late 1970s and early 1980s, when Berne
Pechukas, and Gay and Berne suggested the first orient
dependent van der Waals potential to describe~uniaxial! elip-
soids of revolution. Much later Berardi, Fava, and Zann
suggested a biaxial Gay-Berne potential used also by G
zburg, Glaser, and Clark~see Refs.@19–21#, and references
therein!. Yet, these potentials lead to complicated calcu
tions and, as far as our paper is concerned, may be avo
So, we can take into account only the fact that interacti
must be even inu0 or u0i and have a minimum when thes
angles are zero. This comes from the fact that the van
Waals dispersion energy is minimum when the molecules
parallel ~that is, ;cos2 u! and the repulsive steric energ
must be maximum when the two molecules are at right an
~that is, ;sin2 u!. But, sin2 u512cos2 u and, apart from a
constant, both interactions lead to a minimum proportiona
cos2 u. We can developU’s up to the second order in cosu0
or cosu0i , namely,

U~u0!52uP2~cosu0!.

U1~u01!52u1P2~cosu01!, ~12!

U2~u02!52u2P2~cosu02!,

where P2(cosu) is the Legendre polynomial of the secon
order. We have to emphasize thatu and ui ’s do not have
dimensions of energy, but energy3volume, as it turns out
from Eq.~7!. They should represent approximately the de
of the potential well times the covolume, i.e., a region
cluding the first molecule inside which the second’s cen
can never be found because of the molecular impenetrab
M (u) can be evaluated as in Ref.@7#,

M ~u!52unSP2~cosu!, ~13!

where

S52pE
0

p

f ~u8!P2~cosu8!sinu8du8 ~14!

is the scalar order parameter of the nematic.
In the same manner

M1~u,a1!52u1n1S1~a1!P2~cosu!,

M2~u,a2!52u2n2S2~a2!P2~cosu!, ~15!

where we have introduced
04171
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S1~a1!52pE
0

p

g1~u12a1!P2~cosu1!sinu1du1 ,

S2~a2!52pE
0

p

g2~u22a2!P2~cosu2!sinu2du2 . ~16!

S1(a1) and S2(a2) can be considered the order paramet
of the distribution of polymer fragments along the directio
given bya1 anda2 , respectively@6#. Let us define the adi-
mensional new quantities

«5
un

kT
, «15

u1n1

kT
, «25

u2n2

kT
, ~17!

which represent the interaction energy of one LC molec
with all the other molecules in the covolume~for «! or with
the polymer fragments alonga1 or a2 , in kT units.

One can easily rewrite now Eqs.~10! and ~11!

Z5E exp$@«S1«1S1~a1!1«2S2~a2!#P2~cosu!%dV

~18!

and

f ~u,a1 ,a2!5
1

Z
exp$@«S1«1S1~a1!

1«2S2~a2!#P2~cosu!%. ~19!

It is worth mentioning thatf (u,a1 ,a2) is not atrue Boltz-
mann function because the parametersS, S1(a1) andS2(a2)
have been defined in Eqs.~14! and ~17! with the use of
f (u,a1 ,a2) itself. We encounter here a typical sel
consistent problem that can be solved numerically to get
best value ofS for given S1(a1) andS2(a2) ~see also Ref.
@7#!. An immediate consequence of the fact thatf (u,a1 ,a2)
is only a Boltzmann-like distribution function is that th
quantity Z itself is not a true partition function, and we
should not expect that the well known formulaF
52NkT ln Z holds true. Indeed, coming back to Eqs.~4!
and ~5!, one can see that@7#

F5NkT~ 1
2 «S22 ln Z!. ~20!

Introducing the free energy density inkT units, one has

F5
F

VkT
52n ln Z1

n«S2

2
. ~21!

Following a procedure presented in Ref.@7#, up to a constant

n ln Z5n«S2, ~22!

so, eventually, we have the free energy density

F52
n

2
ln Z52

n

2
«S2. ~23!
0-4
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A first glance at Eq.~23! would tell us that the free energ
density does not depend on the interaction of LC molecu
with the anchoring polymers. Yet, this interaction exists b
cause, as has been mentioned before, the self-consisten
termination ofS depends on the valuesS1(a1) andS2(a2).
Of course, this only happens in the interface region of thi
nessj. Another consequence of Eq.~23! is that F has a
minimum for a nonzero value ofS, a well known result in the
liquid-crystal field.

III. PHOTOALIGNMENT ON TWO ORTHOGONAL
DIRECTIONS

So far, we have not considered the polymer distribut
functions, apart from mentioning a result obtained by us
Ref. @6#, i.e., Eq.~3!. More generally we may consider tha
the distribution function of polymer fragments is, apart fro
a normation factor, given by

g~f!511h~sin2 f!2h~cos2 f!, ~24!

whereh is an even function in sin2 f ~or cos2 f!. As men-
tioned before, a very interesting case is that in which o
performs two irradiations with UV light polarized along o
thogonal directions. We shall also consider that the irrad
tion time and all other experimental conditions are the sa
In this case the functionh would be the same. In fact, let u
considera25a11p/2, then

g~u2a1!511h@sin2~u2a1!#2h@cos2~u2a1!#,

and

gS u2a12
p

2 D511h@cos2~u2a1!#2h@sin2~u2a1!#

522g~u2a1!.

If we come back to definitions~16!

S2S a11
p

2 D52pE
0

p

gS u22a12
p

2 D P2~cosu2!sinu2du2

52p32E
0

p

P2~cosu2!sinu2du2

22pE
0

p

g~u22a1!P2~cosu2!sinu2du2

502S1~a1!. ~25!

Of course, this result is submitted to the condition th
S1(a1), 1

2 , because an order parameter cannot be sma
than21

2. Normally, the order parameter of a polymer dist
bution is much smaller than12 ~see Ref.@6#!.

The direction ofn̂ in a bulk liquid crystal is degenerate
when there is a slightest anisotropy the liquid crystal alig
along it. As a consequence we can always considera150,
that is, theOx direction is along one of the photopolyme
ization directions, the other direction thus making an angla
to it ~in particular,a5p/2!.
04171
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WhenaÞp/2 Eq. ~25! no longer holds true, nevertheles
the closer isa to p/2 the closer will beS2 to 2S1 . In Fig. 2
we have represented by dots the numerical calculation
S2(a) for several values ofa ~a5np/20, n50,1, . . . ,10!
using the functiong(f)5(1/p)(11e2sin2f2e2cos2f). The
line represents the functionS13cos 2a. One can see the ver
good agreement between this function and the calculated
ues ofS2(a). In Appendix A we have proved that the func
tion S13cos 2a is a very good approximation ofS2(a), not
only for the distributiong(f) written above, but also for a
larger class of distributions. In our case, that is, whenA(t)
[1, S1 is 0.3337. If, for different values oft, A(t) is differ-
ent from 1, the actual values ofS1 will change. Playing with
the irradiation time, we can cancel the effect of the fi
polymer orientation even if the second polymerization is n
alonga5p/2, but in the regionp/4,a<p/2.

In Fig. 3 we have plotted the LC distribution functio
f (u) for different values ofS, S1 , and S2 . When «S
1«1S11«2S2 becomes zero, the distribution function is th
straight line f (u)51/p, i.e., the surface does not force an
anisotropy. When the previous sum becomes negative
anisotropic distribution starts to grow alonga5p/2.

In general,«1 , «2 , S1 , andS2 cannot be computed, no
can their contribution be separated, that is, we can ra
introduce two parametersm1 andm2

FIG. 2. Computed values ofS2 for 11 values ofa ~dots!. The
full line represents the functionS1 cos 2a.

FIG. 3. LC distribution functionf (u) for various values ofm.
The greater ism, the narrower and higher is the distribution fun
tion. To m50 there correspond the constant distributionf (u)
51/p, i.e., isotropy. Form,0 the distribution peaks aboutp/2
instead of 0.
0-5
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mi5« iSi~a i !, i 51,2. ~26!

In the same way we introduce

m5«S, ~27!

which may be written as

m

«
5S5E dV f ~u,a1 ,a2!P2~cosu!

5
*0

pP2~cosu!exp@~m1m11m2!P2~cosu!#sinu du

*0
p exp@~m1m11m2!P2~cosu!#sinu du

5c~m!. ~28!

Representing graphically the functionc(m) and intercepting
it with the line m/«, one can get the order parameter for
certain value of«, which corresponds to a certain temper
ture T5nu/k«. Figure 4~a! represents the case when eith
m15m250, or m11m250. The first case corresponds to a
infinite volume filled with LC’s, the broken line giving the
isotropic-nematic transition temperatureTc . The second case
corresponds to the interesting situation when there were
similar UV polymerization processes along orthogonal dir
tions. Figure 4~b! represents the case where there is a shif
the curve to the left due to the existence of a well defin
easy axis. In this case,m11m2Þ0, there is an intercept a
finite S for any slope ofm/« line, that is, for any tempera
ture. This result might seem strange but we must not fo
that eitherm1 or m2 are proportional to the polymer frag
ment densitiesn1 or n2 , which decrease to zero within th
distancej. As a matter of fact the result is only valid in th
layer of thicknessj where one should expect a certain ord
of the liquid crystal even beyond the clearing temperature
has been mentioned thatS1 or S2 can be varied by changin
the irradiation timet. Acting in this way we can first star
with a state of no easy axis, seen in crossed-polarized
croscopy as a mosaic of planar domains randomly orien
Then we initiate the polymerization process along one dir
tion only. The immediate results will consist in increasing t
size of favored domains~where the directorn̂ is almost par-
allel to the easy axis! and the decreasing of the other. Th
cell behaves macroscopically anisotropic. If then we stop
process and start a similar process of UV polymerizat

FIG. 4. The functionc(m) ~full curve! and S5m/« ~broken
lines! whenm11m250, case~a! and whenm11m2Þ0, case~b!. In
case~b! one expects a nematic order at any temperature but on
a very narrow layer of thicknessj.
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along an orthogonal direction, the parameterm2 tends to-
ward 2m1 and the cell becomes isotropic again. Sh
anovskiiet al. have done this type of experiment, the resu
of which ~see Figs. 2, 3, and 4 of Ref.@5#! are in excellent
agreement with the discussion above. It is worth mention
that the compensating effect of the two orthogonal irrad
tions works well even close to saturation. In fact, there is
limitation of that kind in our procedure except, of course, t
case when the saturation is already reached, that is, ther
no ‘‘free’’ monomers to undergo the photopolymerizatio
even along an orthogonal direction. Considering that the
teraction of LC molecules to polymer fragments should n
depend on their orientation with respect to the laborat
frame, the values«1 and«2 should be equal. In this case th
conditionm11m250 impliesS252S1 , which, remember-
ing also Eqs.~3!, ~24!, ~25!, or ~A13!, is achieved, for or-
thogonal directions, only if the irradiation times are equ
Figure 4 in paper@5# shows quite clearly this symmetry wit
respect to time.

Of course, all these facts can be expressed in terms
macroscopic anchoring energy. In our paper@7# we have
linked the anchoring energy coefficient to the order para
eter of the polymer fragments distribution. For only one
rection of photopolymerization the result was@Eq. ~50! in
Ref. @7##

wa5
nj

12
kT

«1S1

m1m1
Q~m1m1!, ~29!

where

Q~m!5

2 expS 3m

2
DA6m

p

erf i SA3m

2
D 2223m. ~30!

@The function erfi(x)[i (2ix)5*0
xet 2

dt is strictly real al-
though it contains the imaginary numberi 5A21.#

Mutatis mutandis, in the case of two photopolymeriza
tions along different directions, Eq.~29! becomes@see Eq.
~B14! of Appendix B#

wa5
nj

12
kT

«1S11«2S2

m1m11m2
Q~m1m11m2!. ~31!

If the two directions are orthogonal, by adjusting also t
irradiation times, one can reach even the situation wh
«1S11«2S250, leading towa50, that is, the cell will be
macroscopically isotropic, concording to experimental
sults and phenomenological arguments of Shiyanovskiiet al.
@5#.

IV. CONCLUSIONS

We have analyzed from a microscopic point of view t
anchoring properties induced by two concomitant or sub
quent photopolymerization processes along orthogonal di
tions. We have seen that, all the other conditions being p

in
0-6
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served, the polymer distribution order parameterS2
associated to the second process of photopolymerization
be expressed as a simple function of the first one, name

S25S1 cos 2a. ~32!

Introducing this result in Eq.~31! we get

wa5
nj

12
kT

«1S1~11cos 2a!

«S1«1S1~11cos 2a!
Q„«S1«1S1

3~11cos 2a!…. ~33!

So, the anglea enters the expression of the anchoring ene
coefficient. If the experimental conditions are not identica
the two processes, we have to write

11
«2

«1
cos 2a

instead of 11cos 2a. But «2 /«1 should not differ much from
1, yet being time dependent. In any case, fora.p/4, one
may find a certain value of time and/or irradiation intens
to drive the value ofwa to zero. Because all this can be do
with the cell already assembled, this might be a good pro
dure to have controlled anchoring strengthin situ.
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APPENDIX A

Let

g~f!5c@11h~sin2 f!2h~cos2 f!#,

wherec is a normation constant in order to have@6#

E
0

p

g~f!df51. ~A1!

We have to get a certain relation between

S152pE
0

p

g~u!P2~cosu!sinu du ~A2!

and

S2~a!52pE
0

p

g~u1a!P2~cosu!sinu du, ~A3!

taking into account the special properties of the funct
h(sin2 f), namely, it is an even function@h(f)5h(2f)#
and symmetric with respect to (p/2)@h(f1p/2)5h(2f
1p/2)#. Also, the following property:
04171
ay
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n

E
0

2p

h~sin2 f!cos~2nf!df52E
0

2p

h~cos2 f!cos~2nf!df

holds true ifn is odd integer.
Let us expandg(f) in a Fourier series

g~f!5
a0

2
1 (

n51

`

@an cos~nf!1bn sin~nf!#. ~A4!

It is not very difficult to see that the properties of the fun
tion h imply that the only nonzero coefficients of the expa
sion are

a0 and a2~2k11! , k50,1,2, . . . .

We have thus the series

g~f!5
a0

2
1a2 cos~2f!1a6 cos~6f!1a10cos~10f!1¯ ,

~A5!

where

a05
1

p E
0

2p

g~f!df5
2

p
, ~A6!

a2~2k11!5
1

p E
0

2p

g~f!cos@2~2k11!f#df. ~A7!

Thus, the order parameterS1 can be approximated by a se
ries

S15s21s61s101¯ , ~A8!

s2~2k11!5a2~2k11!E
0

p

P2~cosu!cos@2~2k11!u#sinu du,

~A9!

andS2 ~a! will be given by the series

S2~a!5s2 cos~2a!1s6 cos~6a!1s10cos~10a!1¯ ,

~A10!

which can be seen quite easily analyzing the integrals~see
Ref. @22#!

a2~2k11!E
0

p

P2~cosu!cos@2~2k11!~u1a!#sinu du

5cos@2~2k11!a#s2~2k11! . ~A11!

In fact, we can drop out the terms proportional to cos(6a),
cos(10a),..., as thecoefficientss6 and s10 are very small
compared tos2 . For instance, ifh(sin2f)5e2sin2f and c
51/p,

S150.333724.8893102424.429310271¯ .
~A12!

So, within the experimental errors, we can use the rule
0-7
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S2~a!5S1 cos~2a!. ~A13!

Even more,S2(p/2)52S1 andS2(p/4)50 are true in any
approximation.

APPENDIX B

The lifting of director degeneracy is due to the liqui
crystal–polymer interaction. If an external agent~a magnetic
field, for instance! tends to rotate the director in the surfa
plane, the distribution functions in the sublayers of thickn
dz will have maxima not for the valueu50, but for certain
anglesaÞ0, wherea will vary with z. Of course, the liquid-
crystal–polymer interaction shall exist only in a small lay
of thicknessj, much smaller than the cell thickness. T
value of the torsion angle, i.e.,a(j)[w, will depend on the
interaction with the polymer and also on the order param
of the latter. In the case of polymers photopolymerized alo
two orthogonal directions, the anglew will depend on the
balance between«1 and «2 , but in the general case, whe
both the directions and the time intervals of photopolym
ization are different, the anglew will depend on the sum
«1S11«2S2 . Note that when the angle between the two
rections is large~approachingp/2! one of the order param
eters, for instanceS2 , becomes negative.

In a recent paper@7# we considered that, if«.«1 and«
.«2 , the value ofS does not vary too much within th
surface layer of thicknessj, and for each ‘‘sublayer’’ the
distribution function can be written as

f ~u1a!5
1

Z1
exp$«SP2~cosu!1~«1S11«2S2!

3P2@cos~u1a!#%, ~B1!

wherea varies linearly withz,

a~z!5w
z

j
. ~B2!

Note that in the equation above we have considered s
rately«SP2(cosu) and («1S11«2S2)P2@cos(u1a)# because
the nematic-nematic interaction must be invariant to a ro
tion of an anglea, whereas the nematic-polymer interactio
would certainly depend ona. It is only the nematic-polymer
04171
s

r

er
g

-

-

a-

-

interaction that gives an increase in the free energy, du
the fact thatf (u1a) no longer minimizes the free energ
density. Of course,

Z15E exp$«SP2~cosu!1~«1S11«2S2!

3P2@cos~u1a!#%dV ~B3!

as well as

F152
n

2
ln Z1 ~B4!

will be functions ofz. The extra free density as a function o
z will be

DF~z!52
n

2
ln

Z1

Z
~B5!

and then, the extra energy per unit surface, due to a torsio
the director will be

DF5kTE
0

j

DF~z!dz. ~B6!

We have to consider the fact that beyond the valuej, i.e., in
the bulk, the liquid crystal is undistorted, so the extra fr
energy density is zero.

The result of the integration depends on the torsion an
w. By definition,

wa[
1

2

]2DF
]w2 U

w50

~B7!

is the coefficient of the azimuthal anchoring. The definiti
tells us that the azimuthal distortion needs to be very sm
so we can use a series development ofP2@cos(u1a)# with
respect toa, up toO(a3),

P2@cos~u1a!#5P2~cosu!1DP, ~B8!

whereDP is very small.
The partition function will be
Z15E exp$«SP2~cosu!1~«1S11«2S2!P2@cos~u1a!#%dV

5E exp$«SP2~cosu!1~«1S11«2S2!P2~cosu!%exp@~«1S11«2S2!DP#dV

'E exp@«SP2~cosu!1~«1S11«2S2!P2~cosu!#@11~«1S11«2S2!DP#dV
0-8
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5ZH 11
1

Z E exp@~«S1«1S11«2S2!P2~cosu!#@~«1S11«2S2!DP#dVJ
5ZH11E f ~u!@~«1S11«2S2!DP#dVJ , ~B9!

where, ifx is small, we used the approximationex.11x. With the same approximation written in the form ln(11x).x, one
gets

DF52
n

2
ln

Z1

Z

52
n

2
lnH11E f ~u!@~«1S11«2S2!DP#dVJ

.2
n

2 E f ~u!@~«1S11«2S2!DP#dV, ~B10!

whereDP is

DP53a cosu sinu1 3
2 a2~122 cos2 u!1O~a3!, ~B11!

and hence results the extra free energy density

DF~z!5
na2~«1S11«2S2!

4~«S1«1S11«2S2!

35 2 exp@ 3
2 ~«S1«1S11«2S2!#A6

p
~«S1«1S11«2S2!

erf i FA3~«S1«1S11«2S3!

2
G 2223~«S1«1S11«2S2!6 , ~B12!

where erfi ~x! has been already defined.
The extra free energy per unit surface will be

DF5kTE
0

j

DFS zw

j Ddz5kT
j

w E
0

w

DF~a!da5
nj

12
w2kT

«1S11«2S2

«S1«1S11«2S2
Q~«S1«1S11«2S2!, ~B13!

the functionQ being defined by Eq.~30!. Eventually, we get

wa5
1

2

]2DF
]w2 U

w50

5
nj

12
kT

«1S11«2S2

«S1«1S11«2S2
Q~«S1«1S11«2S2!. ~B14!
o-
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